Hledej Zobraz: Univerzity Kategorie Rozšířené vyhledávání

12 659   projektů
0 nových

Přednášky ze statistiky

«»
Přípona
.pdf
Typ
přednášky
Stažené
1 x
Velikost
7,8 MB
Jazyk
český
ID projektu
5952
Poslední úprava
15.06.2015
Zobrazeno
1 399 x
Autor:
agata.kucova
Facebook icon Sdílej na Facebooku
Detaily projektu
Popis:
1. Náhodné jevy a jejich vlastnosti
Náhodný jev označuje výsledek náhodného pokusu, o kterém lze po provedení pokusu rozhodnout, zda nastal nebo nenastal.
Náhodný jev představuje událost, která za určitých podmínek buď nastane, nebo nenastane. Je tedy možné vytvořit množinu S všech náhodných jevů, které mohou za daných podmínek nastat.
Míru možnosti jeho nastoupení vyjadřuje v číselné formě jeho pravděpodobnost. U náhodných jevů požadujeme hromadnost a stabilitu, tj. dostatečnou opakovatelnost a neměnnost pokusu. Nezbytným předpokladem je také rozpoznatelnost náhodných jevů.
Předmětem teorie pravděpodobnosti je studium náhodných jevů, tj takových dějů, jejichž výsledek není předem jednoznačně určen a očekává se pouze, že výsledek bude jedním z dané množiny možných výsledků Ω.
Takovému náhodnému ději budeme říkat náhodný pokus. Výsledkem pokusu mohou být čísla, číselné vektory, číselné posloupnosti, časový průběh nějaké funkce na daném intervalu, ale i libovolný kvalitativní ukazatel.
Řekneme, že při realizaci náhodného pokusu nastal jev , jestliže výsledek pokusu ω je prvkem A (tj.
- Výsledek ω pokusu je příznivý jevu A, jestliže
- Jev, který nastane při každé realizaci pokusu - jev jistý 1
- Jev, který nenastane při žádné realizaci pokusu - nemožná jev 0

Klíčová slova:

náhodné javy

statistiky

pravděpodobnost

limitní věta

ukázka jejich použití

latinské čtverce



Obsah:
  • 1. Náhodné jevy a jejich vlastnosti
    2. Pravděpodobnost a její základní vlastnosti
    3. Náhodná veličina a její charakteristiky (hustota, distribuční funkce, střední hodnota, rozptyl, modus, medián, percentily, kvantily)
    4. Příklady nejdůležitějších diskrétních a spojitých rozdělení (alternativní, binomické, Poissonovo, multinomické, rovnoměrné, normální)
    5. Typy dat, rozdíl mezi kvantitativními a kvalitativními daty
    6. Grafické postupy pro zobrazení dat, typu rozdělení a závislosti mezi daty (histogram, empirická distribuční funkce, boxplot, rozptylový graf apod.)
    7. Míry polohy (střední hodnota, medián, modus apod.) a míry variability (rozptyl, rozpětí apod.). Průměry a výběrové rozptyly jako základní odhady střední hodnoty a rozptylu.
    8. Centrální limitní věta a její aplikace
    9. Lineární regresivní model, princip a způsob odhadu, rezidua, interpretace výsledků
    10. Odhady parametrů a konstrukce intervalů spolehlivosti
    11. Statistické rozhodování, princip testování hypotéz, chyba prvního a druhého druhu, p-hodnota
    12. Testy dobré shody a ukázka jejich použití
    13. Porovnání středních hodnot dvou výběrů pro párová a nepárová data
    14. Porovnání středních hodnot více výběrů (analýza rozptylu jednoduchého třídění)
    15. Kontingenční tabulka, geneze a jejich analýza (test nezávislosti, symetrie a homogenity)
    16. Populace a výběr, prostý a systematický náhodný výběr z konečné populace a jeho realizace
    17. Latinské čtverce a jejich použití
    18. Vývoj koncepce jakosti, definice jakosti, historie, přehled problémů. Inženýrství jakosti, terminologie, cena za jakost. On-line a off-line řízení jakosti.
    19. Předpoklady o datech, normalita, vybočující měření, autokorelace, detekce porušení předpokladů.
    20. Variabilita procesů, příčiny variability, modely, diagnostika. Analýza systémů měření.
O souborech cookie na této stránce

Soubory cookie používáme pro funkční účely, pro shromažďování a analýzu informací o výkonu a používání stránky.

Nastavení Povolit vše