Hledej Zobraz: Univerzity Kategorie Rozšířené vyhledávání

12 663
projektů

Vypracovaný okruh "Aplikovaná matematika" ke státnicím

«»
Přípona
.rar
Typ
státnicové otázky
Stažené
0 x
Velikost
45,5 MB
Jazyk
český
ID projektu
10631
Poslední úprava
14.08.2017
Zobrazeno
2 104 x
Autor:
quadra
Facebook icon Sdílej na Facebooku
Detaily projektu
Popis:
Státní závěrečné zkoušky na FS ČVUT v Praze.

Okruhy otázek pro studijní program TZSI (Teoretický základ strojního inženýrství).

APLIKOVANÁ MATEMATIKA

Matematika I
1. Soustava lineárních algebraických rovnic. Frobeniova věta, existence a počet řešení. Možnosti numerického řešení soustavy.
2. Průběh a vlastnosti funkce jedné proměnné vyšetřené pomocí derivací. Geometrický význam 1. a 2. derivace: směrnice tečny, funkce rostoucí, klesající, rychlost růstu, resp. klesání u dané funkce (odhad sklonu tečny), tvar grafu. Monotonie, lokální extrémy, konvexnost, konkávnost a inflexní body.
3. Riemannův integrál, postačující podmínky existence. Newtonova-Leibnizova formule. Základní metody výpočtu (substituční metoda a integrace per-partes). Geometrické aplikace (obsah plochy, objem rotačního tělesa, délka křivky).

Matematika II
4. Funkce více proměnných vyšetřené pomocí derivací. Parciální derivace, gradient a derivace v daném směru, jejich geometrický význam. Tečná rovina, diferenciál, přibližný výpočet hodnoty funkce.
5. Výpočet lokálních extrémů funkcí dvou proměnných. Nutné podmínky, postačující podmínky pro lokální extrém.
6. Dvojný integrál a trojný integrál. Postup při výpočtu pomocí Fubiniovy věty. Geometrické a fyzikální aplikace dvojného a trojného integrálu (obsah obrazce, objem tělesa, hmotnost, moment setrvačnosti, těžiště).
7. Křivkový integrál vektorové funkce. Postup při výpočtu pomocí parametrizace křivky. Práce vykonaná silou podél křivky. Nezávislost křivkového integrálu na integrační cestě. Křivkový integrál potenciálního vektorového pole.
8. Plošný integrál vektorové funkce. Postup při výpočtu pomocí parametrizace plochy. Tok vektorového pole uzavřenou plochou. Gaussova - Ostrogradského věta.

Matematika III
9. Diferenciální rovnice 2. řádu s konstantními koeficienty. Fundamentální systém řešení, obecné řešení rovnice homogenní. Partikulární řešení a obecné řešení rovnice nehomogenní. Cauchyova úloha. Aplikace: Vlastní kmity, vynucené kmity, jejich frekvence a amplituda.
10. Soustava lineárních autonomních diferenciálních rovnic. Určení obecného řešení pomocí vlastních čísel a vlastních vektorů matice soustavy. Typy bodů rovnováhy. Fázový obraz: tvar fázových trajektorií, tečný vektor.
11. Taylorův polynom n-tého stupně. Přibližný výpočet funkční hodnoty pomocí Taylorova polynomu, odhad chyby (Lagrangeův tvar zbytku). Taylorův polynom 1. stupně (rovnice tečny). Taylorova řada funkce jedné proměnné (exponenciální, sinus, kosinus, arctg, logaritmus).

Numerická matematika
12. Princip iteračních metod řešení soustav lineárních algebraických rovnic. Jacobiova a Gaussova-Seidelova iterační metoda. Maticový zápis a zápis v souřadnicích. Podmínky konvergence.
13. Numerické řešení Cauchyovy úlohy pro obyčejnou diferenciální rovnici v normálním tvaru. Jednokrokové metody 1. a 2. řádu. Princip řešení soustavy obyčejných diferenciálních rovnic.
14. Metoda sítí pro řešení Poissonovy rovnice s Dirichletovou okrajovou podmínkou. Sestavení soustavy síťových rovnic. Chyby diskretizace a konvergence metody.

Klíčová slova:

matematika

numerická matematika

algebraické rovnice

derivace

parametrizace plochy



Obsah:
  • APLIKOVANÁ MATEMATIKA

    Matematika I
    1. Soustava lineárních algebraických rovnic. Frobeniova věta, existence a počet řešení. Možnosti numerického řešení soustavy.
    2. Průběh a vlastnosti funkce jedné proměnné vyšetřené pomocí derivací. Geometrický význam 1. a 2. derivace: směrnice tečny, funkce rostoucí, klesající, rychlost růstu, resp. klesání u dané funkce (odhad sklonu tečny), tvar grafu. Monotonie, lokální extrémy, konvexnost, konkávnost a inflexní body.
    3. Riemannův integrál, postačující podmínky existence. Newtonova-Leibnizova formule. Základní metody výpočtu (substituční metoda a integrace per-partes). Geometrické aplikace (obsah plochy, objem rotačního tělesa, délka křivky).

    Matematika II
    4. Funkce více proměnných vyšetřené pomocí derivací. Parciální derivace, gradient a derivace v daném směru, jejich geometrický význam. Tečná rovina, diferenciál, přibližný výpočet hodnoty funkce.
    5. Výpočet lokálních extrémů funkcí dvou proměnných. Nutné podmínky, postačující podmínky pro lokální extrém.
    6. Dvojný integrál a trojný integrál. Postup při výpočtu pomocí Fubiniovy věty. Geometrické a fyzikální aplikace dvojného a trojného integrálu (obsah obrazce, objem tělesa, hmotnost, moment setrvačnosti, těžiště).
    7. Křivkový integrál vektorové funkce. Postup při výpočtu pomocí parametrizace křivky. Práce vykonaná silou podél křivky. Nezávislost křivkového integrálu na integrační cestě. Křivkový integrál potenciálního vektorového pole.
    8. Plošný integrál vektorové funkce. Postup při výpočtu pomocí parametrizace plochy. Tok vektorového pole uzavřenou plochou. Gaussova - Ostrogradského věta.

    Matematika III
    9. Diferenciální rovnice 2. řádu s konstantními koeficienty. Fundamentální systém řešení, obecné řešení rovnice homogenní. Partikulární řešení a obecné řešení rovnice nehomogenní. Cauchyova úloha. Aplikace: Vlastní kmity, vynucené kmity, jejich frekvence a amplituda.
    10. Soustava lineárních autonomních diferenciálních rovnic. Určení obecného řešení pomocí vlastních čísel a vlastních vektorů matice soustavy. Typy bodů rovnováhy. Fázový obraz: tvar fázových trajektorií, tečný vektor.
    11. Taylorův polynom n-tého stupně. Přibližný výpočet funkční hodnoty pomocí Taylorova polynomu, odhad chyby (Lagrangeův tvar zbytku). Taylorův polynom 1. stupně (rovnice tečny). Taylorova řada funkce jedné proměnné (exponenciální, sinus, kosinus, arctg, logaritmus).

    Numerická matematika
    12. Princip iteračních metod řešení soustav lineárních algebraických rovnic. Jacobiova a Gaussova-Seidelova iterační metoda. Maticový zápis a zápis v souřadnicích. Podmínky konvergence.
    13. Numerické řešení Cauchyovy úlohy pro obyčejnou diferenciální rovnici v normálním tvaru. Jednokrokové metody 1. a 2. řádu. Princip řešení soustavy obyčejných diferenciálních rovnic.
    14. Metoda sítí pro řešení Poissonovy rovnice s Dirichletovou okrajovou podmínkou. Sestavení soustavy síťových rovnic. Chyby diskretizace a konvergence metody.
O souborech cookie na této stránce

Soubory cookie používáme pro funkční účely, pro shromažďování a analýzu informací o výkonu a používání stránky.

Nastavení Povolit vše